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1 Introduction

This technical report shows how to significantly speed up memory transfers
of all sizes by means of hand-tuned assembly language code. Copying is time-
critical in certain applications, e.g. file caches (in cases where zero-copy IO
isn’t possible) or chess transposition tables. Unfortunately, the ANSI C89
memcpy implementation shipping with current compilers (e.g. Visual C++
2003 and others) isn’t nearly efficient enough – it can only make use of about
one third of DDR PC2100 memory’s peak bandwidth. One reason for this is
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a lack of updates for modern CPUs. In the case of VC7.1’s code, certain ob-
solete Pentium U/V pipe optimizations are still visible. Also, the C runtime
library cannot assume newer CPU features (e.g. SSE) to be present. Check-
ing for them can slow down the implementation on older CPUs – ironically
those most in need of optimization.

Our solution is to write a replacement for this function, using specialized
transfer instructions where available and taking the cache into account. The
rest of this report is organized as follows: A brief introduction to memory
copying techniques is given and our algorithm is described. Performance is
then compared with that of the current memcpy.

2 Theory

Due to the complex IA-32 / “x86” instruction set, there are several ways to
copy a variable number of bytes. We briefly introduce them:

• series of MOVS instructions. Each one copies 1, 2 or 4 bytes; the ESI

register gives the source address and EDI the destination. The transfer
size is influenced by jumping midway into the series of instructions;
since each one is a one-byte opcode, the address is EndOfSeries −
NumberOfBytesToCopy. This technique is obviously only workable for
small transfer sizes.

• REP MOVS. Repeats MOVS according to the count in ECX. This is typically
what memcpy intrinsics map to.

• unrolled loop of MOV. Copies 4 bytes per instruction and is more efficient
than MOVS-based approaches due to decode considerations.

• MMX MOVQ. Copies 8 bytes at a time and therefore makes full use of
the 64-bit bus.

• FPU FILD/FISTP. Copies 8 bytes at a time but is inexplicably slow on
Pentium IIIs.

• SSE MOVNTQ, together with software or block prefetching. This instruc-
tion avoids ’polluting’ the cache with data that will never be used again.
Prefetching also pulls data into the cache before it’s needed, thereby
reducing memory latency.

There is no single best approach for copying – we must choose among these
techniques at runtime depending on transfer size or possibly other factors

2



(alignment).

AMD have provided an implementation of the above; refer to their white
paper (AMD1) and presentation (AMD2) for details. Unfortunately that
code has two flaws: Performance for small transfer sizes is seriously lacking.
This is due to unnecessary SFENCE/EMMS instructions being invoked as well
as several conditional jumps in the implementation. A further disadvantage
is that it requires SSE, i.e. only Pentium III, Athlon XP or above processors
are supported.

Our contribution will be to introduce solutions to these problems that result
in a more generally useful implementation. The above copy techniques can
be packaged in interchangeable ‘building blocks’. Organizing them as such
allows us to easily rearrange them to reduce conditional branches (a major
performance issue for all superscalar CPUs). We optimize for small transfer
sizes and strive to make them run in a straight line without a single jump.
Rationale is that the cost of jumps will be amortized over large transfer sizes
anyway.

The real trick is to combine CPU feature detection with choosing the copy
technique depending on size. The SSE-enabled codepaths are only reached
if size exceeds a threshold. What we do is take the bitwise-AND of size and
a CPU-feature mask; on CPUs lacking e.g. SSE, the mask is set to 0, thus
preventing that codepath from ever being reached. Note that this technique
could be expanded to support several mask values in case there are other
features to be checked. Since the conditional jumps are necessary anyway,
this approach only ends up adding minimal overhead (one instruction).

With all the pieces in place, we will now consider the implementation.

3 Implementation

The basic design goal is a drop-in replacement for memcpy that is as fast as
possible over all input sizes/alignments. We are willing to require MMX –
this has been available for about ten years now and is universally supported.

Given the above ideas, there are two things left to establish: which ‘building
blocks’ to use for which transfer sizes, and how to order them.

Unfortunately, even with knowledge of the microarchitecture, performance
of the individual copy techniques is difficult to predict; instead we imple-
ment them all and measure the results. A benchmark program observes
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elapsed time (accurate to a single CPU clock) over various transfer sizes
and buffer misalignments. Building upon this measure, each technique has
been painstakingly micro-optimized. Our conclusion is that for transfers of
less than 64 bytes, an unrolled MOV loop together with a jump table for the
last 3 bytes is fastest. The techniques used in AMD’s implementation are
good choices in all other cases. That means all transfer sizes are handled
well by the combination of: unrolled MOV loop, MMX, SSE and SSE+block
prefetching. The borders between them were chosen as follows:

64 bytes: lower limit for one MMX transfer cycle using all registers; larger
sizes make unrolled code onerous.

64 KiB: L1 data cache size; beyond this, techniques that avoid polluting the
cache are a big win.

256 KiB: L2 data cache size; from here on, splitting transfers into chunks
that fit in-cache delivers huge gains.

It remains to determine the ordering of these four building blocks. There
are two constraints: codepaths not using weakly-ordered writes (MOVNTQ) or
MMX should not issue SFENCE/EMMS instructions, respectively; also, small
copies should not require jumps. That induces the following layout: pro-
log, jump to large transfer code if necessary, small block copy, epilog. The
‘large transfer’ code makes use of the mask trick explained above; it then
jumps to the SSE / SSE+block prefetch code or falls through to the MMX
path. After each of these blocks, the minimum possible cleanup is performed
and we jump to the ‘leftovers’ implementation (some of the techniques can
only process e.g. 64 bytes, so any remainders must be handled separately).
Analysing the number of branches taken in choosing a codepath, we see that
tiny transfers get away with 0, while large transfers require 5/3 conditional
and 4/3 unconditional on average (assuming equal distribution of transfer
sizes).

Finally, we discuss the considerable hand-tuning that was undertaken. Con-
trary to conventional wisdom, micro-optimization can easily result in gains of
15 %; this is in addition to taking advantage of e.g. the SSE instruction set.
The following guidelines have been incorporated into our implementation:

• prevent jumps by inlining code (e.g. EPILOG),

• minimize conditional branches,

• reduce memory R/W turnarounds,

• be frugal with registers (Win32 call convention says that everything
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except EAX,ECX,EDX is callee-save). We only use those and ESI,EDI, so
prolog/epilog register save code is kept to a minimum.

• avoid address generation stalls,

• align critical branch targets to 16 bytes,

• choose good prefetch stride,

• use complex addressing modes to reduce loop counter increments.

The results speak for themselves:

4 Performance Review

We now compare performance of our implementation vs. various others on
Athlon XP and Pentium III test systems. Unless otherwise mentioned, the
C++ compiler and runtime library are that of VC7.1. The contenders are:

1. std::copy. This is implemented as a call to memcpy (which is identical
to memmove). We can therefore remove it from consideration; it is indeed
always at least 1 % worse.

2. intrinsic memcpy. This boils down to REP MOVSD and REP MOVSB for the
remainder. It never beats memcpy on the Athlon system; see discussion
of MOVS above.

3. memcpy. This does buffer overlap and alignment checks, handles smaller
transfers via unrolled MOV loop, and otherwise REP MOVSD. It does quite
well up to 64 bytes, but cannot compete from there on due to lack of
MMX/SSE codepaths.

4. memcpy amd [AMD1]. This code also chooses several copy techniques
depending on size. Unfortunately performance on smaller transfers is
severely hobbled due to the aforementioned EMMS/conditional branch
issues, but this becomes negligible for large transfers.

5. ia32 memcpy, our new optimized code. It performs well for both large
and small copy sizes.
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4.1 Benchmark

Before presenting the results, we further describe the benchmark program.
All implementations are called from thunk functions; this factors in the bonus
of inlining that the memcpy intrinsic enjoys. We measure elapsed time over
single calls to the target code via CPU clock counter (RDTSC). External inter-
ference is avoided by setting scheduler priority to the maximum, repeating
the measurement 100 times, median-filtering, and averaging 10 repetitions
of the whole process. We are therefore confident of the measured times,
irrespective of transfer sizes.

An attempt is made to choose realistic misalignments that are typical to
real-world programs. The cached is pre-loaded, which biases performances
figures. However, this is not unrealistic (applications will tend to use what
they copy), all implementations profit from this equally, and it’s difficult to
avoid. Source code is included below.

4.2 Results

Performance is indicated by plots of CPU cycles vs. transfer size.

Figure 4.2 shows performance of small transfers; ia32 memcpy significantly
outperforms all other implementations. memcpy comes closest; although using
the same basic idea, we are 5..6 % faster up to 32 bytes, increasing that to
15..20 % between that and 64 bytes. This is due to less overhead and more
efficient unrolled MOV code.

Figure 4.2 shows elapsed time for mid-sized transfers, where a technique us-
ing MMX is worthwhile. Our code is fastest (by margins of up to 20 %) up to
1 KiB; from there on, prefetching code present in memcpy amd yields enough
improvement to offset our smaller function overhead. Unfortunately we can-
not use prefetch here for reasons of CPU compatibility, so our performance
lags behind by about 5 %.

Figure 4.2 gives the same data for large transfers, where SSE codepaths
become active. The L2 cache size can clearly be seen – as transfer sizes
reach 192 KiB (L2 contains the contents of L1, hence 256 KiB-64 KiB),
memcpy amd and ia32 memcpy fare much better than the others due to non-
temporal copies and block-prefetching. It is here that speedups of 358 % are
seen. The relative performance of these two implementations lies between
-1 % and +10 %. Reduced overhead no longer matters at these sizes, but
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Figure 1: Elapsed time [clocks] for transfers of less than 64 bytes.
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Figure 2: Elapsed time [clocks] for medium-sized transfers.
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Figure 3: Elapsed time [clocks] for large transfers.
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our code still generally comes out ahead due to more efficient branching and
loops.

5 Conclusion

A very fast implementation of memcpy has been presented that significantly
outperforms current runtime library offerings and even AMD’s optimized
code. It does not require special CPU features and can easily be dropped
into your project. Everyone can therefore profit from this work.

Questions, comments, suggestions, bug reports? Feedback is welcome; send
to Jan1.WassenbergATstud.uni-karlsruhe.de (remove digit and replace AT
with @).

Bibliography ============
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A Adding to Visual C++ Projects

Simply add the asm and C++ files to your project; for .asm files, set the
following in their Custom Build Step properties:
Command Line: nasm -f win32 -o "$(IntDir)\$(InputName).asm.obj" "$(InputPath)"

Outputs: $(IntDir)\$(InputName).asm.obj (note: output files are named
*.asm.obj; this avoids conflicts with C++ files of the same base name.)

The free NASM assembler is required and can be found at http://nasm.

sourceforge.net.

B Source Code

Note: Be sure to call ia32 memcpy init before using ia32 memcpy!
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(licensed under the GPL; contact me to discuss the possibility of alternate
licensing for your project)

; set section attributes

section .data data align=32 use32

section .bss bss align=16 use32

section .text code align=64 use32

; activate .text (needs to be separate because __SECT__ will otherwise

; complain that the above definition is redeclaring attributes)

section .text

; Usage:

; use sym(ia32_cap) instead of _ia32_cap - on relevant platforms, sym() will add

; the underlines automagically, on others it won’t

%ifdef DONT_USE_UNDERLINE

%define sym(a) a

%else

%define sym(a) _ %+ a

%endif

;-------------------------------------------------------------------------------

; fast general memcpy

;-------------------------------------------------------------------------------

; drop-in replacement for libc memcpy(). only requires CPU support for

; MMX (by now universal). highly optimized for Athlon and Pentium III

; microarchitectures; significantly outperforms VC7.1 memcpy and memcpy_amd.

; for details, see accompanying article.

; if transfer size is at least this much,

; .. it’s too big for L1. use non-temporal instructions.

UC_THRESHOLD equ 64*1024

; .. it also blows L2. pull chunks into L1 ("block prefetch").

BP_THRESHOLD equ 256*1024

; maximum that can be copied by IC_TINY.

IC_TINY_MAX equ 63

; size of one block prefetch chunk.

BP_SIZE equ 8*1024
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;------------------------------------------------------------------------------

; [p3] replicating this instead of jumping to it from tailN

; saves 1 clock and costs (7-2)*2 bytes code.

%macro EPILOG 0

pop esi

pop edi

mov eax, [esp+4] ; return dst

ret

%endm

align 64

tail1:

mov al, [esi+ecx*4]

mov [edi+ecx*4], al

align 4

tail0:

EPILOG

align 8

tail3:

; [p3] 2 reads followed by 2 writes is better than

; R/W interleaved and RRR/WWW

mov al, [esi+ecx*4+2]

mov [edi+ecx*4+2], al

; already aligned to 8 due to above code

tail2:

mov al, [esi+ecx*4]

mov dl, [esi+ecx*4+1]

mov [edi+ecx*4], al

mov [edi+ecx*4+1], dl

EPILOG

[section .data]

align 16

tail_table dd tail0, tail1, tail2, tail3

__SECT__

; 15x unrolled copy loop - transfers DWORDs backwards.

; indexed via table of 8-bit offsets.
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; rationale:

; - [p3] backwards vs. forwards makes no difference.

; - MOV is faster than MOVSD.

; - index table is needed because calculating end-6*i is slower than

; a LUT and we wouldn’t want to expand entries to 8 bytes

; (that’d increase code footprint by 30 bytes)

; - a byte index accessed via MOVZX is better due to less dcache usage.

; - only unrolling 8x and ’reentering’ the loop is possible but

; slower due to fiddling with esi/ecx.

align 64

unrolled_copy_code_start:

%assign i 15

%rep 14 ; 15 entries, 1 base case handled below

uc_ %+ i:

mov eax, [esi+i*4-4]

mov [edi+i*4-4], eax

%assign i i-1

%endrep

; base case: no displacement needed; skip it so that code will

; be aligned to 8 bytes after this.

uc_1:

mov eax, [esi]

mov [edi], eax

uc_0:

jmp [tail_table+edx*4]

[section .data]

align 32

unrolled_copy_index_table:

%assign i 0

%rep 16

db (uc_ %+ i) - unrolled_copy_code_start

%assign i i+1

%endrep

__SECT__

;------------------------------------------------------------------------------

; tiny copy - handles all cases smaller than IC_MOVQ’s 64 byte lower limit.

; > edx = number of bytes (< IC_TINY_MAX)

; < does not return.
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; x eax, ecx, edx

%macro IC_TINY 0

mov ecx, edx

shr ecx, 2

; calculating this address isn’t possible due to skipping displacement on uc1;

; even so, it’d require calculating -6*ecx, which is slower than LUT.

movzx eax, byte [unrolled_copy_index_table+ecx]

and edx, byte 3

add eax, unrolled_copy_code_start

jmp eax

; never reached! the unrolled loop jumps into tailN, which

; then returns from the memcpy function.

%endm

;------------------------------------------------------------------------------

; align destination address to multiple of 8. important for large transfers,

; but doesn’t affect the tiny technique.

; > esi, edi -> buffers (updated)

; > ecx, edx = transfer size (updated)

; x eax

%macro IC_ALIGN 0

mov eax, edi

and eax, byte 7 ; eax = # misaligned bytes

jz already_aligned ; early out

lea eax, [align_table_start+eax*2]

jmp eax

; [p3] this is no slower than a table of mov and much smaller/simpler

align 8

align_table_start:

%rep 8

dec ecx

movsb

%endrep

mov edx, ecx

already_aligned:

%endm

;------------------------------------------------------------------------------
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; MMX MOVQ technique. used for in-cache transfers of 64B..64*KiB.

; must run on all CPUs, i.e. cannot use the SSE prefetchnta instruction.

; > ecx = -number_of_bytes (multiple of 64)

; > esi, esi point to end of the buffer, i.e. &last_qword+8.

; < ecx = 0

; x

%macro IC_MOVQ 0

align 16

%%loop:

; notes:

; - we can’t use prefetch here - this codepath must support all CPUs.

; [p3] that makes us 5..15% slower on 1KiB..4KiB transfers.

; - [p3] simple addressing without +ecx is 3.5% faster.

; - difference between RR/WW/RR/WW and R..R/W..W:

; [p3] none (if simple addressing)

; [axp] interleaved is better (with +ecx addressing)

; - enough time elapses between first and third pair of reads that we

; could reuse MM0. there is no performance gain either way and

; differing displacements make code compression futile anyway, so

; we’ll just use MM4..7 for clarity.

movq mm0, [esi+ecx]

movq mm1, [esi+ecx+8]

movq [edi+ecx], mm0

movq [edi+ecx+8], mm1

movq mm2, [esi+ecx+16]

movq mm3, [esi+ecx+24]

movq [edi+ecx+16], mm2

movq [edi+ecx+24], mm3

movq mm4, [esi+ecx+32]

movq mm5, [esi+ecx+40]

movq [edi+ecx+32], mm4

movq [edi+ecx+40], mm5

movq mm6, [esi+ecx+48]

movq mm7, [esi+ecx+56]

movq [edi+ecx+48], mm6

movq [edi+ecx+56], mm7

add ecx, byte 64

jnz %%loop

%endm
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;------------------------------------------------------------------------------

; SSE MOVNTQ technique. used for transfers that do not fit in L1,

; i.e. 64KiB..192KiB. requires Pentium III or Athlon; caller checks for this.

; > ecx = -number_of_bytes (multiple of 64)

; > esi, esi point to end of the buffer, i.e. &last_qword+8.

; < ecx = 0

; x

%macro UC_MOVNTQ 0

align 16

%%loop:

; notes:

; - the AMD optimization manual recommends prefetch distances according to

; (200*BytesPerIter/ClocksPerIter+192), which comes out to ~560 here.

; [p3] rounding down to 512 bytes makes for significant gains.

; - [p3] complex addressing with ecx is 1% faster than adding to esi/edi.

prefetchnta [esi+ecx+512]

movq mm0, [esi+ecx]

movq mm1, [esi+ecx+8]

movq mm2, [esi+ecx+16]

movq mm3, [esi+ecx+24]

movq mm4, [esi+ecx+32]

movq mm5, [esi+ecx+40]

movq mm6, [esi+ecx+48]

movq mm7, [esi+ecx+56]

movntq [edi+ecx], mm0

movntq [edi+ecx+8], mm1

movntq [edi+ecx+16], mm2

movntq [edi+ecx+24], mm3

movntq [edi+ecx+32], mm4

movntq [edi+ecx+40], mm5

movntq [edi+ecx+48], mm6

movntq [edi+ecx+56], mm7

add ecx, byte 64

jnz %%loop

%endm

;------------------------------------------------------------------------------
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; block prefetch technique. used for transfers that do not fit in L2,

; i.e. > 192KiB. requires Pentium III or Athlon; caller checks for this.

; for theory behind this, see article.

; > ecx = -number_of_bytes (multiple of 64, <= -BP_SIZE)

; > esi, esi point to end of the buffer, i.e. &last_qword+8.

; < ecx = -remaining_bytes (multiple of 64, > -BP_SIZE)

; < eax = 0

%macro UC_BP_MOVNTQ 0

push edx

align 4

%%prefetch_and_copy_chunk:

; pull chunk into cache by touching each cache line

; (in reverse order to prevent HW prefetches)

mov eax, BP_SIZE/128 ; # iterations

add esi, BP_SIZE

align 16

%%prefetch_loop:

mov edx, [esi+ecx-64]

mov edx, [esi+ecx-128]

add esi, byte -128

dec eax

jnz %%prefetch_loop

; copy chunk in 64 byte pieces

mov eax, BP_SIZE/64 ; # iterations (> signed 8 bit)

align 16

%%copy_loop:

movq mm0, [esi+ecx]

movq mm1, [esi+ecx+8]

movq mm2, [esi+ecx+16]

movq mm3, [esi+ecx+24]

movq mm4, [esi+ecx+32]

movq mm5, [esi+ecx+40]

movq mm6, [esi+ecx+48]

movq mm7, [esi+ecx+56]

movntq [edi+ecx], mm0

movntq [edi+ecx+8], mm1

movntq [edi+ecx+16], mm2

movntq [edi+ecx+24], mm3

movntq [edi+ecx+32], mm4
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movntq [edi+ecx+40], mm5

movntq [edi+ecx+48], mm6

movntq [edi+ecx+56], mm7

add ecx, byte 64

dec eax

jnz %%copy_loop

; if enough data left, process next chunk

cmp ecx, -BP_SIZE

jle %%prefetch_and_copy_chunk

pop edx

%endm

;------------------------------------------------------------------------------

; void* __declspec(naked) ia32_memcpy(void* dst, const void* src, size_t nbytes)

; drop-in replacement for libc memcpy() (returns dst)

global sym(ia32_memcpy)

align 64

sym(ia32_memcpy):

push edi

push esi

mov ecx, [esp+8+4+8] ; nbytes

mov edi, [esp+8+4+0] ; dst

mov esi, [esp+8+4+4] ; src

mov edx, ecx

cmp ecx, byte IC_TINY_MAX

ja choose_larger_method

ic_tiny:

IC_TINY

; never reached - IC_TINY contains memcpy function epilog code

choose_larger_method:

IC_ALIGN

18



; setup:

; eax = number of 64 byte chunks, or 0 if CPU doesn’t support SSE.

; used to choose copy technique.

; ecx = -number_of_bytes, multiple of 64. we jump to ic_tiny if

; there’s not enough left for a single 64 byte chunk, which can

; happen on unaligned 64..71 byte transfers due to IC_ALIGN.

; edx = number of remainder bytes after qwords have been copied;

; will be handled by IC_TINY.

; esi and edi point to end of the respective buffers (more precisely,

; to buffer_start-ecx). this together with the ecx convention means

; we only need one loop counter (instead of having to advance

; that and esi/edi).

; this mask is applied to the transfer size. the 2 specialized copy techniques

; that use SSE are jumped to if size is greater than a threshold.

; we simply set the requested transfer size to 0 if the CPU doesn’t

; support SSE so that those are never reached (done by masking with this).

extern sym(ia32_memcpy_size_mask)

mov eax, [sym(ia32_memcpy_size_mask)]

and ecx, byte ~IC_TINY_MAX

jz ic_tiny ; < 64 bytes left (due to IC_ALIGN)

add esi, ecx

add edi, ecx

and edx, byte IC_TINY_MAX

and eax, ecx

neg ecx

cmp eax, BP_THRESHOLD

jae near uc_bp_movntq

cmp eax, UC_THRESHOLD

jae uc_movntq

ic_movq:

IC_MOVQ

emms

jmp ic_tiny

uc_movntq:

UC_MOVNTQ

sfence

emms
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jmp ic_tiny

uc_bp_movntq:

UC_BP_MOVNTQ

sfence

cmp ecx, byte -(IC_TINY_MAX+1)

jle ic_movq

emms

jmp ic_tiny

;-------------------------------------------------------------------------------

; CPUID support

;-------------------------------------------------------------------------------

[section .data]

; these are actually max_func+1, i.e. the first invalid value.

; the idea here is to avoid a separate cpuid_available flag;

; using signed values doesn’t work because ext_funcs are >= 0x80000000.

max_func dd 0

max_ext_func dd 0

__SECT__

; extern "C" bool __cdecl ia32_cpuid(u32 func, u32* regs)

global sym(ia32_cpuid)

sym(ia32_cpuid):

push ebx

push edi

mov ecx, [esp+8+4+0] ; func

mov edi, [esp+8+4+4] ; -> regs

; compare against max supported func and fail if above

xor eax, eax ; return value on failure

test ecx, ecx

mov edx, [max_ext_func]

js .is_ext_func

mov edx, [max_func]
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.is_ext_func:

cmp ecx, edx

jae .ret ; (see max_func decl)

; issue CPUID and store result registers in array

mov eax, ecx

cpuid

stosd

xchg eax, ebx

stosd

xchg eax, ecx

stosd

xchg eax, edx

stosd

; success

xor eax, eax

inc eax

.ret:

pop edi

pop ebx

ret

;-------------------------------------------------------------------------------

; init

;-------------------------------------------------------------------------------

; extern "C" bool __cdecl ia32_asm_init()

global sym(ia32_asm_init)

sym(ia32_asm_init):

push ebx

; check if CPUID is supported

pushfd

or byte [esp+2], 32

popfd

pushfd

pop eax

xor edx, edx

shr eax, 22 ; bit 21 toggled?
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jnc .no_cpuid

; determine max supported CPUID function

xor eax, eax

cpuid

inc eax ; (see max_func decl)

mov [max_func], eax

mov eax, 0x80000000

cpuid

inc eax ; (see max_func decl)

mov [max_ext_func], eax

.no_cpuid:

pop ebx

ret

================================================================================

C++ header

================================================================================

typedef unsigned int u32;

typedef unsigned int uint;

// package code into a single statement.

// notes:

// - for(;;) { break; } and {} don’t work because invocations of macros

// implemented with STMT often end with ";", thus breaking if() expressions.

// - we’d really like to eliminate "conditional expression is constant"

// warnings. replacing 0 literals with extern volatile variables fools

// VC7 but isn’t guaranteed to be free of overhead. we will just

// squelch the warning (unfortunately non-portable).

#define STMT(STMT_code__) do { STMT_code__; } while(false)

// execute the code passed as a parameter only the first time this is

// reached.

// may be called at any time (in particular before main), but is not

// thread-safe. if that’s important, use pthread_once() instead.

#define ONCE(ONCE_code__)\

STMT(\

static bool ONCE_done__ = false;\

if(!ONCE_done__)\
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{\

ONCE_done__ = true;\

ONCE_code__;\

}\

)

#define debug_warn(str) assert(0 && str)

#define BIT(n) (1ul << (n))

#define restrict

extern "C" void ia32_asm_init();

// CPU caps (128 bits)

// do not change the order!

enum CpuCap

{

// standard (ecx) - currently only defined by Intel

SSE3 = 0+0,// Streaming SIMD Extensions 3

EST = 0+7,// Enhanced Speedstep Technology

// standard (edx)

TSC = 32+4,// TimeStamp Counter

CMOV = 32+15,// Conditional MOVe

MMX = 32+23,// MultiMedia eXtensions

SSE = 32+25,// Streaming SIMD Extensions

SSE2 = 32+26,// Streaming SIMD Extensions 2

HT = 32+28,// HyperThreading

// extended (ecx)

// extended (edx) - currently only defined by AMD

AMD_MP = 96+19,// MultiProcessing capable; reserved on AMD64

AMD_MMX_EXT = 96+22,

AMD_3DNOW_PRO = 96+30,

AMD_3DNOW = 96+31

};

extern "C" bool ia32_cap(CpuCap cap);
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// order in which registers are stored in regs array

// (do not change! brand string relies on this ordering)

enum IA32Regs

{

EAX,

EBX,

ECX,

EDX

};

// try to call the specified CPUID sub-function. returns true on success or

// false on failure (i.e. CPUID or the specific function not supported).

// returns eax, ebx, ecx, edx registers in above order.

extern "C" bool ia32_cpuid(u32 func, u32* regs);

extern "C" void* ia32_memcpy(void* dst, const void* src, size_t nbytes);

================================================================================

C++ init code

================================================================================

// set by ia32_init, referenced by ia32_memcpy (asm)

extern "C" u32 ia32_memcpy_size_mask = 0;

bool ia32_cap(CpuCap cap)

{

// treated as 128 bit field; order: std ecx, std edx, ext ecx, ext edx

// keep in sync with enum CpuCap!

static u32 caps[4];

ONCE(\

u32 regs[4];

if(ia32_cpuid(1, regs))\

{\

caps[0] = regs[ECX];\

caps[1] = regs[EDX];\

}\

if(ia32_cpuid(0x80000001, regs))\

{\

caps[2] = regs[ECX];\

caps[3] = regs[EDX];\

}\
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);

const uint tbl_idx = cap >> 5;

const uint bit_idx = cap & 0x1f;

if(tbl_idx > 3)

{

debug_warn("cap invalid");

return false;

}

return (caps[tbl_idx] & BIT(bit_idx)) != 0;

}

void ia32_init()

{

ia32_asm_init();

// memcpy init: set the mask that is applied to transfer size before

// choosing copy technique. this is the mechanism for disabling

// codepaths that aren’t supported on all CPUs; see article for details.

// .. check for PREFETCHNTA and MOVNTQ support. these are part of the SSE

// instruction set, but also supported on older Athlons as part of

// the extended AMD MMX set.

if(ia32_cap(SSE) || ia32_cap(AMD_MMX_EXT))

ia32_memcpy_size_mask = ~0u;

}

================================================================================

benchmark

================================================================================

// call through a function pointer for convenience and to foil optimizations.

typedef void*(*PFmemcpy)(void* restrict, const void* restrict, size_t);

// allocated memory is aligned to this; benchmark adds misalign.

static const size_t ALIGN = 64;

// max copy size; we allocate 1 byte more for sentinel

static const size_t MAX_SIZE = 1*MiB;

static const size_t MAX_MISALIGN = 64;

// note: various debug_asserts checking if dt > 0 have an important purpose:

25



// they catch values of -1.#IND0, which indicates MMX code lacking a

// trailing EMMS instruction.

static i64 measure_impl(PFmemcpy impl, void* dst, const void* src, size_t size)

{

debug_assert(size <= MAX_SIZE);

// (we check below if values were correctly copied)

const u8 SENTINEL = 0xDF;

const u32 prev_value = *(u32*)((u8*)dst-4);

memset(dst, (int)SENTINEL, MAX_SIZE+1);

// repeat measurement several times and filter the results to

// reduce external interference (e.g. task switch). this is a

// problem when measuring large transfers despite REALTIME thread pri.

const int REPS = 8;

double sum_of_avgs = 0.0;

for(int reps = 0; reps < REPS; reps++)

{

const int NUM_SAMPLES = 80;

i64 dts[NUM_SAMPLES];

for(int i = 0; i < NUM_SAMPLES; i++)

{

const i64 t0 = rdtsc();

impl(dst, src, size);

const i64 t1 = rdtsc();

const i64 dt = t1-t0;

debug_assert(dt > 0); // shouldn’t be negative or 0

dts[i] = dt;

// make sure the implementation copied correctly.

// this is only done once to avoid randomized effects (e.g. the

// first run takes care of half, the second does the rest),

// and to reduce benchmark execution time.

if(i == 0)

{

// copied everything successfully

debug_assert(memcmp(src, dst, size) == 0);

// didn’t overflow i.e. sentinel byte still intact

debug_assert( ((u8*)dst)[size] == SENTINEL );

26



// didn’t underflow

debug_assert(prev_value == *(u32*)((u8*)dst-4));

}

}

// .. median filter (discard upper and lower fringes; average the rest)

// this is good to 0.3% spread on 64KB transfers.

std::sort(dts, dts+NUM_SAMPLES);

i64 total_dt = 0;

const int LO = NUM_SAMPLES/10, HI = 1*NUM_SAMPLES/5;

for(int i = LO; i < HI; i++)

total_dt += dts[i];

const double avg_dt = (double)total_dt / (double)(HI-LO);

sum_of_avgs += avg_dt;

debug_assert(sum_of_avgs > 0.0);

}

const i64 result = ia32_i64_from_double(sum_of_avgs/REPS);

debug_assert(result > 0);

return result;

}

// perform the benchmark for <impl>, copying from src_mem to dst_mem.

// the execution time of transfers of all sizes and misalignments up to

// MAX_* are added together and returned [in CPU clocks].

static i64 measure_foreach_misalign(PFmemcpy impl, void* dst_mem,

const void* src_mem, size_t size)

{

i64 total_dt = 0;

static const size_t misalignments[] = { 0,8,4,0,8,1,0,8,4,0,8,1,0,8,4 };

// static const size_t misalignments[] = { 0,0,1,2,3,4 };

// static const size_t misalignments[] = { 1 };

for(int misalign_idx = 0; misalign_idx < ARRAY_SIZE(misalignments); misalign_idx++)

{

const size_t misalign = misalignments[misalign_idx];

debug_assert(misalign <= MAX_MISALIGN);

void* dst = (char*)dst_mem + misalign;

const void* src = (const char*)src_mem + misalign;

const i64 dt = measure_impl(impl, dst, src, size);
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debug_assert(dt > 0);

total_dt += dt;

}

debug_assert(total_dt > 0);

const double avg_dt = (double)total_dt / ARRAY_SIZE(misalignments);

const i64 result = ia32_i64_from_double(avg_dt);

debug_assert(result > 0);

return result;

}

static void* thunk_std_copy(void* dst, const void* src, size_t size)

{

std::copy<const u8*, u8*>((const u8*)src, (const u8*)src+size, (u8*)dst);

return dst;

}

#pragma intrinsic(memcpy)

static void* thunk_intrinsic(void* dst, const void* src, size_t size)

{

return memcpy(dst, src, size);

}

#pragma function(memcpy)

static void* thunk_amd(void* dst, const void* src, size_t size)

{

return memcpy_amd(dst, src, size);

}

static void* thunk_jan(void* dst, const void* src, size_t size)

{

return memcpy2(dst, src, size);

}

static void* thunk_vc71(void* dst, const void* src, size_t size)

{

return memcpy(dst, src, size);

}
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struct Contender

{

const char* name;

PFmemcpy impl;

i64 elapsed_clocks;

};

static struct Contender contenders[] =

{

{"Jan ", thunk_jan},

{"VC7.1 ", thunk_vc71},

{"AMD ", thunk_amd},

{"std::copy", thunk_std_copy},

{"intrinsic", thunk_intrinsic}

};

static void do_benchmark_for_sizes(const size_t sizes[],

void* aligned_dst, const void* aligned_src)

{

for(int size_idx = 0; ; size_idx++)

{

const size_t size = sizes[size_idx];

if(!size)

break;

debug_printf("\n%d:\n", size);

for(int i = 0; i < ARRAY_SIZE(contenders); i++)

contenders[i].elapsed_clocks = measure_foreach_misalign(

contenders[i].impl, aligned_dst, aligned_src, size);

// find minimum

i64 min_clocks = LLONG_MAX;

for(int i = 0; i < ARRAY_SIZE(contenders); i++)

min_clocks = MIN(min_clocks, contenders[i].elapsed_clocks);

// display results with delta to best value

for(int i = 0; i < ARRAY_SIZE(contenders); i++)

{

const double difference = (contenders[i].elapsed_clocks - min_clocks) / (double)min_clocks;

debug_printf(" %s: %I64d (+%.1f%%)\n", contenders[i].name, contenders[i].elapsed_clocks, difference*100.);
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}

}

}

// globals passed between init, shutdown and memcpy_benchmark

static void* dst_mem;

static const void* src_mem;

static void* aligned_dst;

static const void* aligned_src;

static int old_policy; static sched_param old_param;

static void init()

{

const size_t total_size = MAX_SIZE+1 + ALIGN + MAX_MISALIGN;

dst_mem = malloc(total_size);

src_mem = (const void*)malloc(total_size);

if(!dst_mem || !src_mem)

{

debug_warn("memcpy_benchmark failed; couldn’t allocate buffers");

throw std::bad_alloc();

}

// align pointers [just so that misalignment actually goes from 0..63,

// instead of e.g. 21..20 (mod 64)]

aligned_dst = (void*)round_up((uintptr_t)dst_mem, ALIGN);

aligned_src = (const void*)round_up((uintptr_t)src_mem, ALIGN);

// fill src with an easily discernable test pattern - this is to ensure

// "memcmp = 0 <==> copy is correctly implemented".

for(size_t i = 0; i < MAX_SIZE; i++)

((u8*)aligned_src)[i] = (u8)(i % 256);

// set max priority, to reduce interference while measuring.

pthread_getschedparam(pthread_self(), &old_policy, &old_param);

sched_param max_param = {0};

max_param.sched_priority = sched_get_priority_max(SCHED_FIFO);

pthread_setschedparam(pthread_self(), SCHED_FIFO, &max_param);

}

static void shutdown()
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{

// restore previous policy and priority.

pthread_setschedparam(pthread_self(), old_policy, &old_param);

free(dst_mem);

free((void*)src_mem);

}

void memcpy_benchmark()

{

ia32_init(); // necessary - we may be called via self-test before normal init

init();

debug_printf("TINY TRANSFERS\n");

debug_printf("---------------\n");

// static size_t small_sizes[64];for(int i = 0; i < 32; i++) small_sizes[i] = i+1;

static const size_t small_sizes[] = { 8, 12, 16, 24, 26, 32, 35, 37, 40,41,42,43, 50, 60, 0 };

do_benchmark_for_sizes(small_sizes, aligned_dst, aligned_src);

debug_printf("MMX TRANSFERS\n");

debug_printf("---------------\n");

static const size_t med_sizes[] = { 64, 128, 256, 512, 1024, 2048, 4096, /*16384, 32768,*/ 0 };

do_benchmark_for_sizes(med_sizes, aligned_dst, aligned_src);

debug_printf("LARGE TRANSFERS\n");

debug_printf("---------------\n");

static const size_t large_sizes[] = { 64*KiB, 96*KiB, 128*KiB, 192*KiB, 256*KiB, 384*KiB, 512*KiB, 1024*KiB, 0};

do_benchmark_for_sizes(large_sizes, aligned_dst, aligned_src);

shutdown();

}
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