Friends have asked me about genetic engineering. After some research, I feel a mix of shock, horror, and rage. Vast hubris, primitive technology, blind faith, incalculable risks, deliberate lies, broken promises, billions of losses, thousands of deaths.
Why does all this happen? Simple: greed. Pesticide pushers gain market share if crops are engineered to mostly survive that particular poison. Seed providers (often the same company) rake in the cash when seeds self-destruct and must be purchased anew every year.
Meanwhile, we are taken for fools, exposed to known and unknown health risks, and sanctimoniously told that this is for the benefit of the hungry poor, who suffer the most from it.
I’d like to expand this into a larger article, but for now we will understand what’s going on, expose the lies, and see how to avoid the worst of the trouble.
Anything worth having requires effort and awareness. There is simply no alternative; luck is not a strategy, and sticking our heads in the sand won’t solve any problems. Onwards!
They sow the wind
In a nutshell, genetic engineering seeks to produce certain proteins, which are assembled according to DNA blueprints. The desired DNA gene is mass-produced by placing it inside bacterial DNA. Target plant cells are also grown in an artificial medium. The new genes are transferred by letting different bacteria infect the plant cells and insert their DNA, or by attaching DNA to metal particles and hoping they are spliced into plant DNA.
Because this process is highly unpredictable, an antidote is inserted alongside the other DNA payload and the cells are exposed to the corresponding poison. The few that survive probably got most of the intended DNA. These cells are allowed to grow into plants, though many do not survive.
Afterwards, basic weighings may be performed, alongside `studies’ in which a few animals are fed something similar for several days. Actually, those are optional, because the US regulatory agency allows seed companies to self-certify their products as safe for any use, which of course they usually do. What could possibly go wrong?
.. and reap the storm
As it turns out, lots. The proteins being produced are typically intended to kill insects, or resist pesticides dumped on the plant. Who can say they don’t also harm us? A few half-hearted and laughably small animal feeding experiments and trials were undertaken in the hope of finding nothing, and even these were enough to uncover a long list of problems: bleeding stomachs in rats, intestinal damage in mice, allergies in humans, deaths of cows.
Roots of the disaster
How can this happen? Crytoxins are a common class of target proteins. Their name derives from their crystal shape, which kills insects by quite literally poking holes in their guts. When companies bother to investigate whether we are similarly damaged, they claim the toxins are made harmless during digestion. Unfortunately, we have 1/1000th the amount of digestive enzymes, and nowhere near the acidity required to even partially break them down.
Those are just the known and intended proteins. Recall the gene insertion process is completely unpredictable: the payload may be inserted anywhere within the plant DNA, sometimes reversed, with parts of the participating bacterial DNA thrown in. The original DNA is also damaged by insertion and mutations from the growth medium. This means all sorts of unintended proteins can be, and are, produced. Afraid of finding something they don’t want to know, companies usually don’t sequence the genome to see what came out, and actively refuse to give researchers even tiny samples.
Even if the DNA arrives mostly intact, it might land in an unused region. Genes are forcibly switched on by so-called promoters from a virus. In addition to uncontrolled and permanent mass-production of the target toxin, this can also activate other dormant genes (including ancient viruses slumbering within our DNA). At the opposite end, a terminator is intended to halt copying from the blueprint, but it often does not work, which means all kinds of new and unknown proteins are produced.
This does not hinder the headless scramble to market, because the few tests are usually run with the protein that was _intended_ to be produced. Unfortunately, the blueprints came from bacteria, but are being built by plants. Proteins produced there can be folded differently or come with sugar molecules attached, which changes the way they interact. Those tests therefore cannot guarantee the safety of the actual genetically modified organisms.
To complete the picture of completely unpredictable chaos, the damaged and unstable DNA may mutate further, or be acted upon differently when growing conditions change. In short, we have absolutely no idea what is going on, beyond the near certainty that the resulting plant differs in terms of nutrients and toxins. Do you feel lucky today?
Suborned government
How could this happen? Surely the government has an interest in ensuring public health? Apparently not enough. Perhaps they fear driving away the big companies and their taxable profits. Maybe they actually believed the demonstrably false tales of higher yields and lower pesticide use. There is another simple explanation: the revolving door between business and the government. A former GMO developer switched sides and became responsible for regulating her own product; conversely, regulators might remain silent to avoid endangering lucrative subsequent jobs within the industry.
Such corruption seems more common in the US, but the German government also allowed the reapproval of MON 810 corn despite public protests. These have had some success, prompting Monsanto to quietly pause their European marketing efforts, except in Spain, Portugal and Romania.
However, storm clouds gather. The TTIP being negotiated behind closed doors may allow the Americans to force their untested and dangerous GMOs on the EU. The US position is: “What’s good enough for American families to eat is also good for Europeans to eat”. That would be a disaster; although the EU delegation seems unprepared and inadequate, hopefully at least the German officials will remember the oath they swore “to avert harm to their people”.
Fixing it ourselves
Although governments have been suborned and co-opted, we are not defenseless. Ultimately, our well-being is our very personal responsibility; there are always options. The first thing to do is seek out organic food. Most restaurants and processed food sources do not, so it pays to cook at home (a delightful social activity).
In the US, the GMO cancer has spread so far and wide that even organic crops are contaminated with GMO through cross-pollination. The sad requirement there is to avoid soy, corn, canola, cotton, papaya and be careful with zucchini and squash. Interestingly, the top two GMO crops, soy and corn, are also among the top seven causes of food allergies – perhaps not a coincidence.
Canola is used to make vegetable oil, another important reason to reject any that don’t explicitly mention their source. Thankfully, EU organic rules forbid feeding animals GMO feed, but elsewhere they are given the cheapest and worst, and some toxins pass into milk and meat. We should seek out grass-fed beef (which has other health benefits), and eat less of it.
If this appears expensive or troublesome, how much would it cost to mitigate a food allergy, repair intestinal damage, or undo changes to the DNA of our gut flora? The cost and effort of choosing organic ingredients is far more manageable, and cooking with fresh (or fresh-frozen) pesticide-free ingredients is a delight. The results may be a pleasant surprise – who knew vegetables could taste so good?